Introduction to Multimedia Computing

Scalable Video Coding

CENG 460 By: Roya Choupani

Topics

- Video On Demand Requirements
- Video Transcoding
- Scalable Video Coding
 - Spatial Scalability
 - Temporal Scalability
 - Signal to Noise Scalability
 - Drift Error

CENG 460 By: Roya Choupani

Communicating Multimedia

• Multimedia data is used from a distance using computer networks.

• The Internet is a public network that can be used for multimedia transmission.

Multimedia over the Internet

- Multimedia data can be used as:
 - Streaming data

• Data (audio, video, etc) is presented to the end-user only once (without being saved to a file).

- Downloadable
 - Data is downloaded to a file and presented to the end-user repeatedly.

Video on Demand over the Internet

Video On Demand (VOD) streaming server

CENG 460 By: Roya Choupani

Computer Networks and the Internet

- The Internet has a heterogeneous structure.
- The Internet is a best-effort network.
- The Internet does not guarantee a fixed data rate over a connection.
- Multimedia data should adapt itself with network data rate changes.

Need for Adaptive Videos

 Networks have different bandwidths and data rates

Need for Adaptive Videos

• Display devices have different properties

8

Adapting Video (1): Transcoding

- Transcoding is defined as changing a video in
 - Resolution (Spatial Transcoding)
 - Frames per second (Temporal Transcoding)
 - Bits per pixel (SNR Transcoding)
 - Inserting additional data into the video (Content Transcoding)
 - Algorithm (Standard Transcoding)

Realtime Transcoding

- The routers in the network should perform transcoding
- Transcoding is slow because
 - Video should be decoded (include IDCT)
 - Video should be re-encoded (includes DCT and Motion Estimation)

Adapting Video (2): Scalable Video Coding

- In Scalable Video Coding, the receiver adapts the video to its capabilities.
- Video is coded in a way that the receiver can receive part of it.
- Adapting video should be fast.

Scalable Video Coding

- Video is divided into multiple layers
- First layer is called **Base Layer**
- Base Layer defines the video in the lowest quality
- Remaining layers add to the quality of the video and are called **Enhancement Layers**.

Spatial Scalability

- Some pixels from each frame are put in the base layer and the remaining in the enhancement layer(s)
- e.g. The low resolution is the base layer, and the high resolution is base +enhancement layer frames

Red Pixels are Base Layer Pixels

CENG 460 By: Roya Choupani

Spatial Scalability

99	100	86	82
111	102	70	78
36	45	150	152
23	44	154	160

103	79	
37	154	

-4	-3	7	3
8	-1	-9	-1
-1	8	-4	-2
-14	7	0	6

Original Frame

Base Layer

Enhancement Layer

15

Temporal Scalability

- In temporal scalability, some frames are put in base layer and some in enhancement layers
- The example below is a video with one base layer and two enhancement layers

Base Layer

Enhancement Layer 1

Enhancement Layer 2

CENG 460 By: Roya Choupani

Temporal Scalability

18

SNR Scalability

- In Signal To Noise Scalability, significant bits are put in the base layer and the remaining bits in the enhancement layers.
- Receiver concatenates the bits to create high quality video

Reconstructed using Base Layer Only

Reconstructed using both Layers

CENG 460 By: Roya Choupani

SNR Scalability

99	101	86	82
111	102	70	78
36	45	150	152
23	44	154	160

9	10	8	8
11	10	7	7
3	4	15	15
2	4	15	16

9	1	6	2
1	2	0	8
6	5	0	2
3	4	4	0

Original Frame

21

Base Frame

Enhancement Layer

Multilayer Scalability

6.5 kbps

Spatial scalability

21.6 kbps

133.9 kbps

436.3 kbps

Quality (SNR) scalability

22

Drift Problem

- In video coding each frame is obtained from the previous frame.
- Any error in reconstructing a frame causes error in the next frame.
- Accumulated error reduces the quality of the video. (Drift Problem)

23

Multilayer Scalability Problem

- Receiver can receive data partially.
- Partial data is used for reconstructing the next frame.
- Drift problem happens

24

Summary

- On Demand Video requires adaptation with network properties
- Transcoding is used for video adaptation but requires a long processing time
- Scalable video coding encodes video in a way that it can adapt without decoding/encoding

Questions?

CENG 460 By: Roya Choupani