
- 1. Considering text data compression using run length coding:
 - a. Discuss if run length coding can always reduce the data size
 - b. Is the code length an effective factor is compressing data (1, 2 or 3 bytes of codes for instance)?
 - c. Can we combine run length coding with variable length coding? How?
- 2. Assume 10 codes with the following probabilities are given.
 - a. Create the variable length code-words for the codes using Huffman coding. Show how you obtain the code-words.
 - b. Show that the coding method has the self-adjusting characteristic using an example from your code-words.

Code	Probability
А	0.25
В	0.19
С	0.16
D	0.14
E	0.09
F	0.06
G	0.04
Н	0.04
М	0.02
Р	0.01

- 3. In which steps of the lossy jpeg algorithm do we have data loss? How can we reduce the compressed data size?
- 4. Mention the main methods in speeding up the motion estimation in video coding.
- 5. A group of pictures (GOP) in MEPG consists of inter-frame and intra-frames. Why do we need to have two different types of frame coding in a GOP? What are the advantages and disadvantages of each?
- 6. Explain what is meant by masking in audio. Describe different types with examples.
- 7. Mention different types of redundancy with examples.
- 8. Assume a single channel image is encoded using LZW algorithm. The first 5 bytes are 120,124, 124, 124,124. Follow the algorithm and show what is written to the file.