Introduction to Multimedia Computing

Audio Media Type (II)

Topics

- Properties of Audio Media (recap)
- Audio Data Compression
 - Motivation
 - Redundancy
 - Redundant Audio Data
 - MPEG Layer 3 (mp3) standard

Digital Audio (recap)

What is Sound?

Sound is the brain's interpretation of electrical impulses being sent by the inner ear through the nervous system.

- Audio is sound within the acoustic range available to humans.
- \triangleright An audio is an alternating signal with frequency (AF) within the 20 to 20,000 hertz (cycles per second) range.

Sound Categories (recap)

Content Sound

Content sound provides information to audiences, for example, dialogs in movies or

theater.

Ambient Sound

Ambient sound consists of an array of background and sound effects.

Sample Audio Data (recap)

- 20,000 Hz sound, sampled at 40,000 sample/second
- Quantization level: 256 (8 bits)
- 40,000 * 1 bytes / sec data

With 65,536 (16 bits) quantization levels, data size will be 40,000 * 2 = 80,000 bytes/second

Sound Formats and Settings (recap)

Mono Recording:

File size = Sampling rate x duration of recording in seconds x (bits per sample/8) x 1

Stereo Recording:

File size = Sampling rate x duration of recording in seconds x (bits per sample/8) x 2

Audio Representation Standards (recap)

- wav standard audio file format used mainly in Windows PCs. Commonly used for storing uncompressed, CD-quality sound files.
- mp3 the MPEG Layer-3 format is the most popular format for downloading and storing music.
- au the standard audio file format used by Sun, Unix and Java. The audio in au files can be uncompressed or compressed.

WAV Audio Standard

- The WAV file format is a Microsoft specification for the storage of multimedia files.
- A WAV file starts out with a file header followed by a sequence of data chunks.
- A WAV file consists of two sub-chunks
 - a "fmt " chunk specifying the data format
 - a "data" chunk containing the actual sample data.

WAV File Format

The chunk descriptor

The Format of concern here is "WAVE", which requires two sub-chunks: "fmt " and "data"

The "fmt " sub-chunk

describes the format of the sound information in the data sub-chunk

The "data" sub-chunk

Indicates the size of the sound information and contains the raw sound data

The WAVE format header

Length	Name	Description
4	ChunkID	Contains the
		letters "RIFF" in
		ASCII form
4	ChunkSize	This is the size of
		the
		entire file in
		bytes minus 8 bytes
		for the
		two fields not
		included in this
		count:
		ChunkID and
		ChunkSize.
4	Format	Contains the
		letters "WAVE"

The WAVE format header

- The "WAVE" format consists of two sub-chunks: "fmt " and "data":
- The "fmt " sub-chunk describes the sound data's format:
- The "data" sub-chunk contains the size of the data and the actual sound:

Length	Name	Description	
4	Subchunk1ID	Contains the letters "fmt "	
4	Subchunk1Size	16 for uncompressed case. This is the size of the	
		rest of the Sub-chunk which follows this number.	
2	AudioFormat	Uncompressed = 1 , Values other than 1 indicate	
		some form of compression.	
2	NumChannels	Mono = 1, Stereo = 2, etc.	
4	SampleRate	8000, 44100, etc.	
4	ByteRate	== SampleRate * NumChannels * BitsPerSample/8	
2	BlockAlign	== NumChannels * BitsPerSample/8	
2	BitsPerSample	8 bits = 8, 16 bits = 16, etc.	
2	ExtraParamSize	if uncompressed, then doesn't exist	
Х	ExtraParams	space for extra parameters	
4	Subchunk2ID	Contains the letters "data"	
4	Subchunk2Size	== NumSamples * NumChannels * BitsPerSample/8	
		This is the number of bytes in the data.	
*	Data	The actual sound data.	

Need for Compression

- Uncompressed digital CD-quality audio signals include a large amount of data and are therefore not suited for storage and transmission.
- The need to reduce this amount without any noticeable quality loss was stated in the late 80s by the International Organization for Standardization (ISO).

Data Redundancy

- Redundancy in information theory is the number of bits used to transmit a message minus the number of bits of actual information in the message.
- Informally, it is the amount of wasted "space" used to transmit certain data

Data Compression

Data compression or source coding is the process of encoding information using fewer bits than an un-encoded representation.

Redundancy Types in Audio

Psycho-acoustics & Perceptual Coding

- Psycho-acoustics is the research where we aim to understand how the ear and brain interact as various sounds enter the ear.
 - A middle aged man will not hear much above 16 kHz.
 - Frequencies ranging from 2 kHz to 4 kHz are easiest to perceive, they are detectable at a relatively low volume.
 - As the frequencies changes towards the ends of the audible bandwidth, the volume must also be increased for us to detect them

The absolute threshold of hearing

18

Masking

- While playing a CD it is impossible to percept all data reaching your ears, so there is no point in storing the part of the music that will be inaudible.
- The process that makes certain samples inaudible is called masking.
- There are two masking effects that the perceptual codec need to be aware of;
 - simultaneous masking
 - temporal masking.

Simultaneous Masking

- Experiments have shown that the human ear has 24 frequency bands.
- Frequencies in these so called critical bands are harder to distinguish by the human ear.
- If there is a dominant tonal component present in an audio signal it will introduce a masking threshold that will mask out frequencies in the same critical band
- This frequency-domain phenomenon is known as simultaneous masking, which has been observed within critical bands

Simultaneous Masking

Temporal Masking

- Temporal masking occurs in the time-domain.
- A stronger tonal component (masker) will mask a weaker one (maskee) if they appear within a small interval of time.
- The masking threshold will mask weaker signals pre and post to the masker.
- Pre-masking usually lasts about 50 ms while post-masking will last from 50 to 300 ms

Temporal Masking

The MPEG-1 Standard

- The development began in 1988 and was finalized in 1992 given the name MPEG-1. The standard consisted of three different parts:
 - An audio part
 - A video part
 - A System part

MPEG-1 Audio

For the audio part there were three levels of compression and complexity defined; Layer I, Layer II and Layer III. Increased complexity requires less transmission bandwidth since the compression scheme becomes more effective.

	Coding	Ratio	Required bitrate
	PCM CD Quality	1:1	1.4 Mbps
omplexity	Layer I	4:1	384 kbps
	Layer II	8:1	192 kbps
	Layer III (MP3)	12:1	128 kbps

Audio Data Compression

- MEPG standard does not include the sounds that are not heard. Therefore, masking concepts are used for compressing data
- MPEG standard considers other types of redundancies. These redundancies will be discussed later

Summary

- Audio is an important media type used for transferring information, creating sound effects, music, and so on.
- A large number of real-time applications transmit audio data over the Internet. Therefore, compressing audio is necessary.
- Human ear cannot every frequency. Some frequencies mask others. These properties are used for removing data redundancy