Introduction to Multimedia Computing Image Compression

Topics

- Compression types
 - Lossless compression
 - Lossy compression
- Redundancy/redundancy types
- Lossless image compression methods
 - Lossless jpeg
- Lossy image compression methods
 JPEG
 - Cosine Transform and Quantization
 - Entropy Encoding

Image Compression Types (recap)

- Image compression algorithms are classified in two groups:
 - Lossless algorithms:
 - The decompressed image and the original image are exactly the same (no data loss)
 - Lossy algorithms:
 - Decompressed image and the original image are different but generally the difference is not noticeable

Data Redundancy (recap)

- Definition: If some parts of data are stored repeatedly, or can be derived from other parts, the data is said to be redundant
- e.g. If the pixels of a region in an image have the same color, we do not need to store the color value for all of them.

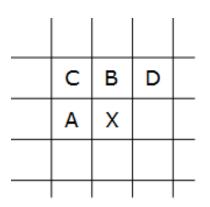
Redundancy Types

- Visual Redundancy
- Spatial Redundancy
- Temporal Redundancy
- Stochastic Redundancy

JPEG Standard

- The name "JPEG" stands for Joint Photographic Experts Group
- Jpeg was developed by one of two subgroups of ISO/IEC Joint Technical Committee in 1992
- Jpeg was approved in September 1992 as ITU-T Recommendation T.81

Lossless JPEG

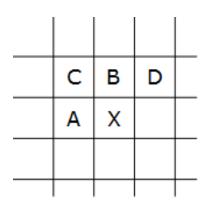

Lossless JPEG

- Lossless JPEG uses differential pulse code modulation (DPCM).
- The predictor finds the difference of each pixel with its neighbors.
- The difference is coded (using entropy coding)

Lossless JPEG

- The image is scanned from top to bottom and from left to right
- Neighbors of a pixel should be coded before the pixel itself.
- Neighbors of a pixel (X) are shown below.

Example


112	110	111	109	108	108
110	104	111	19	19	20
113	107	109	21	18	18

112	2	-1	2	1	0
110	6	-7	92	0	-1
113	6	-2	88	3	0

Coding of a Pixel

Selection-value	Prediction
0	No prediction
1	A
2	В
3	С
4	A + B – C
5	A + (B – C)/2
6	B + (A – C)/2
7	(A + B)/2

Compression rate is about 50%. Lossless JPEG is mainly used in medical images

Lossy Image Compression

Motivation:

- Compression rates of the lossless algorithms are about 30%.
- This rate is not enough for large images

Solution:

- Using lossy image compression.
- In lossy compression, decompressed image and the original image are different but generally the difference is not noticeable

Lossy JPEG

- Jpeg standard uses:
 - Visual redundancy
 - Spatial redundancy
 - Stochastic redundancy

To compress an image

Visual Redundancy

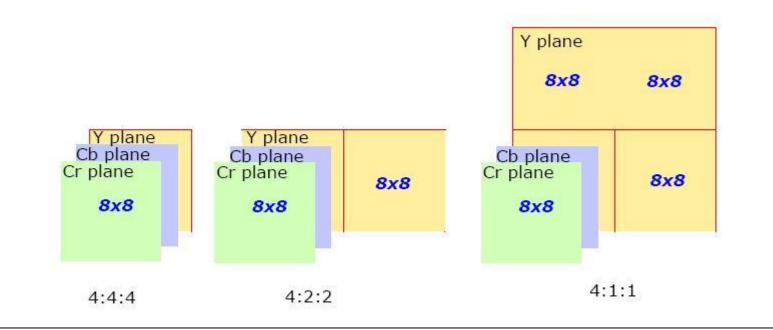
- Human visual system is less sensitive to color than intensity.
- JPEG standard stores less color information than intensity
- To separate color information from intensity, RGB data is converted into YCbCr

Color space transformation

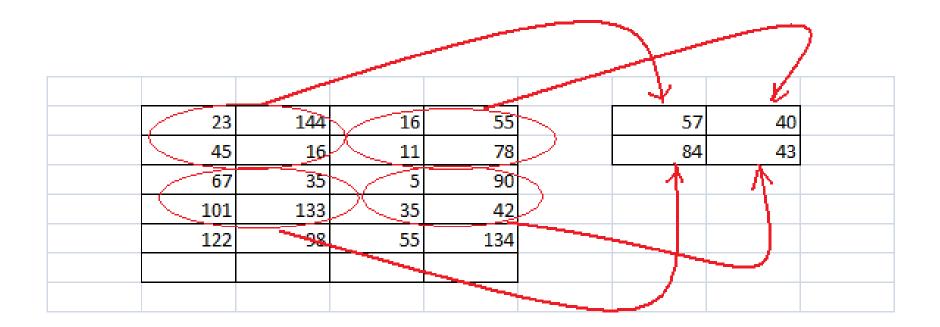
 RGB values of the pixels are converted to YCbCr

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Dividing Image into Blocks


- The image is divided into blocks of 16x16 pixels called macro-blocks
- Color transformation from RGB to YCbCr is done for each macro-block
- Down-samples Cb and Cr

I6x16 macro-blocks are further divided into four 8x8 blocks


Down Sampling (1)

Cb and Cr components are down-sampled as shown below.

Down Sampling (2)

Effect of Removing Visual Redundancy

- Each macro-block consists of three components (Y, Cb, Cr)
- Each component has 4 blocks
- Each macro-block contains 3x4=12 blocks
- After down-sampling (4:1:1), a macro-block has 4 (Y) + 1 (Cb) + 1 (Cr) = 6 blocks
- This is equal to 50% compression

Spatial Redundancy

- If neighboring pixels are close in color, the signal has low frequency
- If neighboring pixels are very different, the image contains high frequency
- Discrete Cosine Transform (DCT) is used to separate low frequency from high frequency data

Discrete cosine transform

 Cosine transform is applied to each block after down-sampling.

$$G_{u,v} = \alpha(u)\alpha(v)\sum_{x=0}^{7}\sum_{y=0}^{7}g_{x,y}\cos\left[\frac{\pi}{8}\left(x+\frac{1}{2}\right)u\right]\cos\left[\frac{\pi}{8}\left(y+\frac{1}{2}\right)v\right]$$

where

$$\alpha_p(n) = \begin{cases} \sqrt{\frac{1}{8}}, & \text{if } n = 0\\ \sqrt{\frac{2}{8}}, & \text{otherwise} \end{cases}$$

Quantization

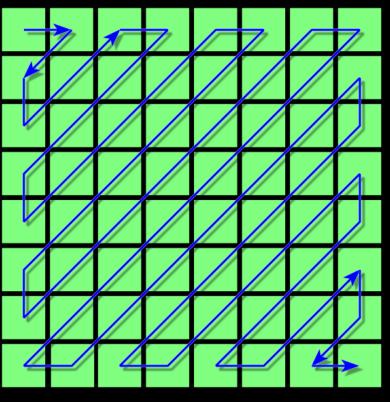
- DCT coefficients are rounded to integer numbers.
- Then quantization is done using a quantization table.

$$B_{j,k} = \operatorname{round}\left(\frac{G_{j,k}}{Q_{j,k}}\right)$$

B is the quantized value, G is the coefficient and Q is quantization table value.

 $\begin{array}{c} 0 \\ 0 \end{array}$

0 0


Quantization Example

(

Zig-zag coding

The quantized coefficients are listed after a zig-zag tracing. The list has many zeros at the end

Effect of Removing Spatial Redundancy

- The quantized coefficients at the right bottom corner correspond to high frequency content
- After zig-zag scanning, high frequency coefficients are at the end of the list.
- The zeros at the end of the list are not stored.

Code Blocks

- Code blocks after zig-zag coding are created by the number of zeros and the non zero value coming after them. <number of zeros, nonzero value>
- e.g. 30400050000006 (0,3), (1,4), (3,5), (7,6)

Entropy coding

- The code blocks after zig-zag scaning are coded using a stochastic or entropy coding method to store less number of bits.
- In entropy coding less number of bits are assigned to the codes that are repeated more. (variable length codes)
- The Huffman method is used for variable length coding.

Image Quality

JPEG image quality depends on

- Down sampling type (4:4:4, 4:2:2, 4:1:1)
- Quantization matrix (If values of the quantization matrix are large, more zeros are resulted, and more data is lost.)
- Higher compression rate causes lower quality of the image

Sample Coded Data

139	144	149	153	155	155	155	155	235.6	-1.0	-12.1	-5.2	2.1	-1.7	-2.7	1.3	16	11	10	16	24	40	51	61
144	151	153	156	159	156	156	156	-22.6	-17.5	-6.2	-3.2	-2.9	-0.1	0.4	-1.2	12	12	14	19	26	58	60	55
150	155	160	163	158	156	156	156	-10.9	-9.3	-1.6	1.5	0.2	-0.9	-0.6	-0.1	14	13	16	24	40	57	69	56
159	161	162	160	160	159	159	159	-7.1	-1.9	0.2	1.5	0.9	-0.1	0.0	0.3	14	17	22	29	51	87	80	62
159	160	161	162	162	155	155	155	-0.6	-0.8	1.5	1.6	-0.1	-0.7	0.6	1.3	18	22	37	56	68	109	103	77
161	161	161	161	160	157	157	157	1.8	-0.2	1.6	-0.3	-0.8	1.5	1.0	-1.0	24	35	55	64	81	104	113	92
162	162	161	163	162	157	157	157	-1.3	-0.4	-0.3	-1.5	-0.5	1.7	1.1	-0.8	49	64	78	87	103	121	120	101
162	162	161	161	163	158	158	158	-2.6	1.6	-3.8	-1.8	1.9	1.2	-0.6	-0.4	72	92	95	98	112	100	103	99
	(a)	001180	:			1		0	b) f		d D		- ff	aian	ta.		(a) a	anti	ratio	n toh	la	
	(a)	sourc	e im	age s	samp	les		(i	b) f	orwa	ru D	CT c	oem	cien	15		(c) q	uanti	zatio	n tao	le	
15	(a) 0	-1	0	o age s	o amp	0	0	240	<i></i>	-10	0	0	0	0	0	144	146						156
				0			0 0	240	<i></i>									149	152	154	156	156	
15	0	-1	0	0	0	0		240 -24	0 ·	-10	0	0	0	0	0	148	146	149 152	152 154	154	156 156	156 156	156
15 -2	0 -1	-1 0	0 0	0	0	0	0	240 -24	0.12	-10 0	0 0	0 0	0 0	0 0	0	148 155	146 150	149 152 157	152 154 158	154 156 158	156 156 157	156 156 156	156 155
15 -2 -1	0 -1 -1	-1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	240 -24 -14	0 - 12 -13	-10 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	148 155 160	146 150 156	149 152 157 161	152 154 158 162	154 156 158 161	156 156 157 159	156 156 156 157	156 155 155
15 -2 -1 0	0 -1 -1 0	-1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	240 -24 -14 0	0 - -12 -13 0	-10 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	148 155 160 163	146 150 156 161	149 152 157 161 164	152 154 158 162 163	154 156 158 161 162	156 156 157 159 160	156 156 156 157 158	156 155 155 156
15 -2 -1 0 0	0 -1 -1 0 0	-1 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	240 -24 -14 0 0	0 -12 -13 0 0	-10 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	148 155 160 163 163	146 150 156 161 163	149 152 157 161 164 164	152 154 158 162 163 164	154 156 158 161 162 162	156 156 157 159 160 160	156 156 157 158 158	156 155 155 156 157

(d) normalized quantized coefficients

(e) denormalized quantized coefficients

(f) reconstructed image samples

Image	Quality	Size (bytes)	Compression ratio
	Higher quality (Q = 100)	83,261	2.6:1
	High quality (Q = 50)	15,138	15:1
	Medium quality (Q = 25)	9,553	23:1
	Low quality (Q = 10)	4,787	46:1

a Choupani 11/29/2021

30

JPEG Coding Algorithm

- The encoding process steps of JPEG:
 - The color of the pixels in the image is converted from RGB to YCbCr
 - The resolution of the Cb and Cr data is reduced, usually by a factor of 2. (Down-sampling)
 - The macro-blocks are split into blocks of 8×8 pixels, and for each block, each of the Y, Cb, and Cr data undergoes a discrete cosine transform (DCT).
 - The DCT coefficients are quantized and zig-zag scanned.
 - The resulting data for all 8×8 blocks is further compressed with a loss-less stochastic algorithm.

Questions?