Introduction to Multimedia Computing

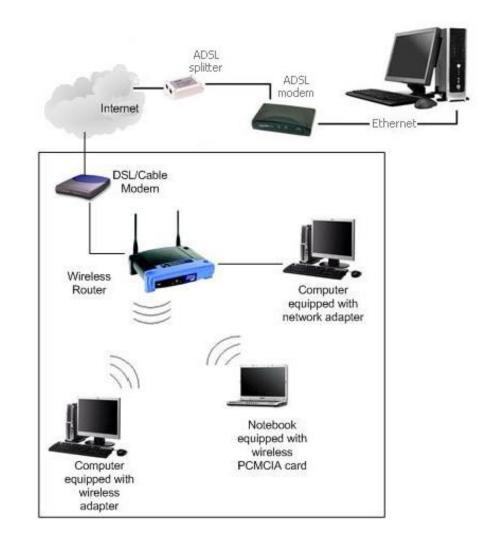
12/29/2021

Introduction to Adaptive Video Coding Scalable Video Coding

Topics

- Communicating Video Media
- Need for Adaptive Video Coding
- Transcoding (recap)
- Scalable Video Coding
 - Spatial Scalability
 - Temporal Scalability
 - SNR Scalability
- Multiple Scalability
- Drift Problem

Communicating Multimedia (recap)


- Multimedia data is used from a distance using computer networks.
- The Internet is a public network that can be used for multimedia transmission.

Computer Networks and the Internet

- The Internet has a heterogeneous structure.
- The Internet is a best-effort network.
- The Internet does not guarantee a fixed data rate over a connection.
- Multimedia data should adapt itself with network data rate changes.

Need for Adaptive Videos

 Networks have different bandwidths and data rates

CENG 460

12/29/2021

Need for Adaptive Videos

Display devices have different properties

CENG 460

12/29/2021

Adapting Video (1): Transcoding

Transcoding is defined as changing a video in

- Resolution (Spatial Transcoding)
- Frames per second (Temporal Transcoding)
- Bits per pixel (SNR Transcoding)
- Inserting additional data into the video (Content Transcoding)
- Algorithm (Standard Transcoding)

Real-time Transcoding

- The gateways in the network should perform transcoding
 - Transcoding is slow because
 - Video should be decoded (include IDCT)
 - Video should be re-encoded (includes DCT and Motion Estimation)

Adapting Video (2): Scalable Video Coding

- In Scalable Video Coding, the receiver adapts the video to its capabilities.
- Video is coded in a way that the receiver can receive part of it.
- Adapting video should be fast.

Scalable Video Coding

- In scalable video coding the video is divided into multiple layers
- First layer is called the **Base Layer**
- Base Layer defines the video in the lowest quality
- Remaining layers add to the quality of the video and are called Enhancement Layers.

Types of Video Scalability

- Scalability can be defined in term of:
 - Lower resolution (Spatial Scalability)
 - Lower frame rate (Temporal Scalability)
 - Lower color depth (Signal to Noise (SNR) Scalability)

12/29/2021

Lower Resolution Scalability

- The base layer video is a lower resolution video.
- The enhancement layer increases the resolution.
- If the network bandwidth is not sufficient, or the display resolution of the receiver is low, only the base layer is received.

Low Frame Rate Scalability

- The base layer has a lower frame rate (for instance: 15 frames/sec)
- The enhancement layer adds to the frame rate (for instance: increasing the frame rate to 30 frames/sec)
- The frame rate scalability changes the number of frames in unit of time (hence temporal scalability)

CENG 460

Color Depth Scalability

- Each frame pixel is represented by a few bits.
- The typical number of bits/pixel is 24 bits (Red=8 bits, Green=8 bits, Blue=8 bits)
- Lower number of bits means fewer number of colors in the frame.


Color Depth Scalability

- The base layer uses fewer number of bits/pixel.
- The enhancement layer adds to the bits/pixel rate, and improves the visual quality of the frames.
- The pixel accuracy in representing colors is referred to as Signal to Noise Ratio.

Spatial Scalability

- Some pixels from each frame are put in the base layer and the remaining in the enhancement layer(s)
- e.g. The low resolution is the base layer, and the high resolution is base +enhancement layer frames

Resolution Scalability

Red Pixels are Base Layer Pixels

CENG 460

12/29/2021 17

Spatial Scalability

99	100	86	82
111	102	70	78
36	45	150	152
23	44	154	160

103	79
37	154

-4	-3	7	3
8	-1	-9	-1
-1	8	-4	-2
-14	7	0	6

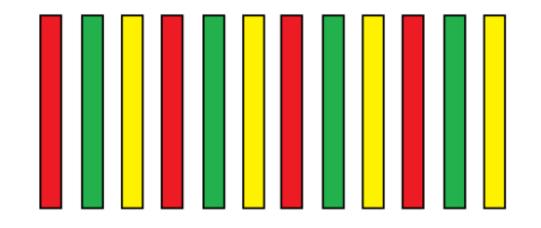
Original Frame

Base Layer

Enhancement Layer

CENG 460

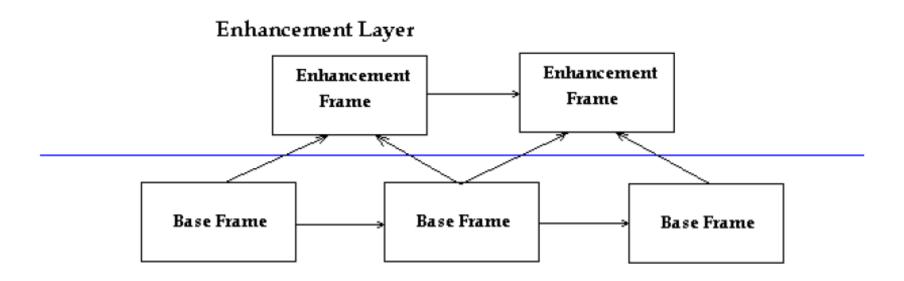
12/29/2021


Spatial Scalability at the Receiver

- The receiver follows the steps below to represent and render the video:
 - If only the base layer is used, display it
 - If the base layer and the enhancement layer are used, up-sample the base layer, and add enhancement layer values to get the original frame

Temporal Scalability

- In temporal scalability, some frames are put in base layer and some in enhancement layers
- The example below is a video with one base layer and two enhancement layers

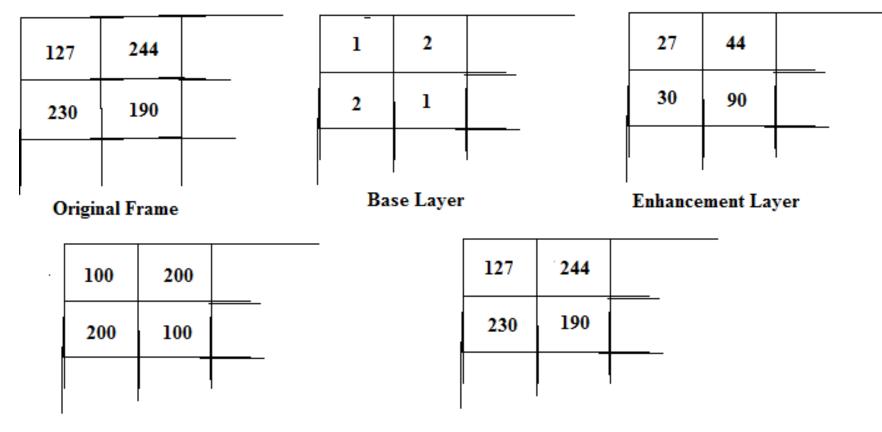

Enhancement Layer 1

Enhancement Layer 2

CENG 460

12/29/2021

Temporal Scalability


Base Layer

CENG 460

12/29/2021 22

SNR Scalability

- In Signal To Noise Scalability, significant bits are put in the base layer and the remaining bits in the enhancement layers.
- Receiver concatenates the bits to create high quality video

Reconstructed using Base Layer Only

Reconstructed using both Layers

CENG 460

SNR Scalability

99	101	86	82	9	10	8	8	9	1	6	2
111	102	70	78	11	10	7	7	1	2	0	8
36	45	150	152	3	4	15	15	6	5	0	2
23	44	154	160	2	4	15	16	3	4	4	. 0

Original Frame

Base Frame

Enhancement Layer

Multilayer Scalability

- Videos can be modified to include multiple types of scalability
- For instance, resolution and frame rate scalability can be applied to a video

Multiple Scalability

6.5 kbps

Spatial scalability

21.6 kbps

133.9 kbps

436.3 kbps

Quality (SNR) scalability

CENG 460

12/29/2021

Drift Problem

- In video coding each frame is obtained from the previous frame.
- Any error in reconstructing a frame causes error in the next frame.
- Accumulated error reduces the quality of the video. (Drift Problem)

Multiple Scalability Problem

- Receiver can receive data partially.
- Partial data is used for reconstructing the next frame.
- The reconstructed frame is slightly different than the original frame
- The reconstructed frame is used as a reference frame for the next frame
- Drift problem happens

Summary

- On Demand Video requires adaptation with network properties
- Transcoding is used for video adaptation but requires a long processing time
- Scalable video coding encodes video in a way that it can adapt without decoding/encoding

Questions?

CENG 460

12/29/2021